Abstract

Constructing of ultrathin 2D material for highly efficiency

Two dimensional materials possess inherent advantages to improve electrocatalytic performance. First, two dimensional nanosheets have large surface–volume ratio, which can promote the adsorption of substrates and provide high specific surface area for electrocatalytic reactions. Moreover, the 2D nature of the nanosheets indicates short diffusion distance for electrons, which causes faster charge transfer rate and better turnover frequency. Therefore, Constructing of 2D ultrathin nanosheets is an effective strategy to achieve high electrocatalytic performance. Our group recently reported a series of 2D ultrathin materials: (1) Bimetal ultrathin metal-organic frameworks (MOFs) nanosheets were successfully prepared through a simple ultrasonic oscillation method. Due to the ultrathin feature, the surface metal atoms are highly coordinated unsaturated, which greatly benefit the adsorption process, 
thus offering outstanding performance. Besides, two kinds of metal atoms could generate the coupling pair, which could effectively promote the charge transfer.1 (2) On the basis of ultrathin nanosheets, novel 3D flower-like Ni2P were synthesized through the self-assembly of ultrathin Ni2P nanosheet


Author(s):

Guangtong Hai
 



Abstract | PDF

Share this  Facebook  Twitter  LinkedIn  Google+

paper.io

agar io

wowcappadocia.com
cappadocia-hotels.com
caruscappadocia.com
brothersballoon.com
balloon-rides.net

wormax io