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Abstract
The dynamics of probability (modulus) and phase (current) components of general 
electronic states is used to determine the temporal evolution of the overall 
descriptors of the information (determinicity) and entropy (indeterminicity) 
content of complex molecular states. These resultant information-theoretic 
concepts combine the classical (probability) contributions of Fisher and Shannon, 
and the corresponding nonclassical supplements due to the state phase/current. 
The total time derivatives of such overall measures of the gradient information and 
complex entropy are determined from Schrödinger’s equation using the chain-
rule transformations. These overall productions of the gradient information and 
complex entropy are shown to be of a purely nonclassical origin, thus identically 
vanishing in real electronic states, e.g., the nondegenerate ground state of a 
molecule.
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Introduction
The electronic structure of molecules is reflected by both the 
system electron density and its current distribution. One recalls 
that the continuity relation for the state probability density, which 
relates these two structural aspects, implies that the density 
dynamics is determined by current’s divergence. Therefore, to 
paraphrase Prigogine [1], while the particle density determines 
a static structure of “being”, the probability current delineates 
a dynamic structure of “becoming”. These two structural facets 
generate the associated classical and non-classical contributions 
to the resultant measure of the information/entropy content 
of the system complex electronic state [2]. A general electronic 
wave function is a complex entity characterized by its modulus 
and phase components. The square of the former defines the 
particle probability distribution, the structure of “being”, while 
the gradient of the latter generates the state current density, the 
structure of “becoming”.

The following tensor notation is adopted: A denotes a scalar, A 
is the row/column vector, A represents a square or rectangular 
matrix and the dashed symbol Â stands for the quantum-

mechanical operator of the physical property A. The logarithm 
of the Shannon information measure is taken to an arbitrary 
but fixed base: log=log2 corresponds to the information content 
measured in bits (binary digits), while log=ln expresses the 
amount of information in nats (natural units): 1 nat=1.44 bits.

The classical Information Theory (IT) [3-10], an important branch 
of the applied probability theory, has already provided with new 
insights into the molecular electronic structure and generated 
useful descriptors of atoms in molecules, reactivity preferences 
and patterns of chemical bonds, e.g., [11-15]. The familiar 
information/entropy measures of Fisher [3,4] and Shannon [5,6] 
only reflect the state information/entropy content due to the 
probability distribution, thus failing to distinguish states exhibiting 
the same electron density but different current compositions. The 
recently introduced resultant IT descriptors [2,16-22] combine 
these classical contributions with their respective nonclassical 
supplements due to the state phase/current. The densities of the 
nonclassical information/entropy terms exhibit the same mutual 
relations as their classical analogs and they introduce the non-
vanishing source terms into their respective continuity relations 
[2]. They have been successfully used to establish the phase 
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and information equilibria in molecules, and to distinguish the 
mutually bonded (phase-related, “entangled”) and non-bonded 
(phase-unrelated, “disentangled”) status of molecular fragments 
or reactants [23-28].

In the quantum IT description of equilibria in molecular systems 
and their constituent fragments one has to employ both the 
probability and phase/current aspects of their quantum states, 
in order to fully characterize the overall information content in 
molecular wave functions, the equilibrium states of both the 
system as a whole and its constituent parts, a degree of the 
quantum entanglement (mutual bonding status) of subsystems, 
or the electron diffusion processes [24]. In this analysis, after 
a brief summary of these novel IT concepts, we examine their 
temporal evolution using the probability and phase dynamics 
determined by the Schrödinger equation. The time dependence 
of the resultant information/entropy will be expressed in terms 
of the probability and phase degrees-of-freedom of molecular 
states. The total time derivatives of the average resultant 
gradient information and complex global entropy, integrals of the 
“source” terms in the associated continuity equations [2,24,26], 
will be derived via the spatial chain-rule transformations in terms 
of the relevant partial functional derivatives. They will be also 
interpreted within Schrödinger’s dynamical picture of quantum 
mechanics and their nonclassical origins will be revealed.

Probability and Phase/Current 
Components of Electronic States
For simplicity, let us consider a single electron (N=1) at time t0=0 
in state |ψ(t0)〉=|ψ(0)〉 described by the associated wave function 
in position-representation, 

ψ(r)=〈r|ψ(0)〉=R(r) exp[iφ(r)],			                   (1) 

Where R(r) and φ(r) stand for its modulus and phase parts. Here, 
the complete basis {|r〉}, ∫|r〉〈r|dr=1, combines the eigenvectors 
of the spatial position operator ˆ ˆr, r r r r′ ′ ′= , i.e., the state-
vectors corresponding to the precise particle localizations {r}, 
the representation elementary events for the given time t0. At 
this very instant one determines the probability density, the 
expectation value of a local projection operator.

ˆ (r )   r r′ρ = ,

2

ˆ (r')=|r |,p(r,0) (0) | r | (0) (r)* (r)

| (r) | (r) (r)

r r

R p

ρ ψ ψ ψ ψ

ψ ρ ψ

= = ≡

= ≡
      	                  (2) 

And its current density
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The local current is seen to combine the position probability 
density p(r) and the particle momentum per unit mass, i.e., the 

average velocity V(r)=p/m of the probability fluid, reflecting the 
state phase-gradient and measuring the average probability-
current per particle:

V(r)=j(r)/p(r)=(ħ/m)∇φ(r).				                            (5)

To summarize, the wave function modulus, the classical amplitude 
of the particle probability density, and the state phase or its 
gradient determining the effective velocity of the probability 
flux constitute two fundamental degrees-of-freedom in the full 
quantum IT treatment of electronic states in this illustrative 
one-electron system: ψ⇔(R,φ)⇔(p, j). The probability and 
phase “fluids” are fixed by the given electronic state. Since these 
parameters of the specified molecular wave function are neither 
“destroyed” nor “created” the source terms in their respective 
continuity equations must identically vanish.

One envisages a single electron moving in the external potential 
due to the “frozen” nuclei of the molecule, 

(r) / | r R |v Zα αα
= − −∑ 			                                    (6) 

described by the electronic Hamiltonian operator 

2
2ˆ ˆ(r) (r) (r) (r),

2
H v T v

m
 

= − ∇ + = + 
 

 	      	              	                 (7)

Where T̂( )r  denotes its kinetic part. The quantum dynamics of a 
general electronic state, 

(r,t)= r| (t) =R(r, t)exp[i (r,t)] (t)=R(t)exp[i (t)],ψ ψ φ ψ φ≡               (8)

is determined by the Schrödinger equation (SE),

1(t) ˆ(i ) (t),y H
t

ψ−∂
=

∂


				                     (9)

Which also determines temporal evolutions of the instantaneous 
probability density p(r, t)=|ψ(r, t)|

2 = R(r, t)
2 ≡ p(t) and of the state 

phase φ(r, t)≡φ(t). The time-derivative of the former expresses 
the source less continuity relation for the probability distribution,

p dp/dt= p/ t+ .j=0 or p/ t=- .j.σ ≡ ∂ ∂ ∇ ∂ ∂ ∇ 		                (10)

Interpreting the probability-source of the total derivative dp/dt as 
the time rate of change of the density in an infinitesimal volume 
element of the probability fluid as it moves in space, with the 
partial derivative ∂p/∂t similarly representing the corresponding 
rate at the fixed point in space, 

dp/dt=p/∂t+(dr/dt)⋅(∂p/∂r)=∂p/∂t+V⋅∇p=0,		                  (11) 

Identifies the last, convection term related to the effective 
velocity of Equation 5, 

V⋅∇p=∇⋅j=V⋅∇p+p∇⋅V,				                  (12) 

and hence the vanishing “reaction” contribution [22] in this 
probability-balance equation: 

p∇⋅V=0 or ∇⋅V=0.				                 (13)

Therefore, the velocity field V(r) of the probability fluid is also 
source less in character.

Let us similarly examine the phase-field φ(r, t), fixed by the 
molecular state of Equation 8, and its conjugate current  
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J(r, t)=φ(r, t) V(r, t). The phase-dynamics, derived from SE, reads:

∂φ/∂t=[ħ/(2m)] [R−1∆R-(∇φ)2]-v/ħ 

 ≡ − ∇⋅J=-V⋅∇φ or					                    (14)

σφ ≡dφ/dt=∂φ/∂t+∇⋅J 

 =∂φ/∂t+(dr/dt)⋅(∂φ/∂r)=∂φ/∂t+V⋅∇φ=0,	                              (15)

A reference to Equation 14 shows that the time evolution of 
the state phase is shaped by the spatial inhomogeneity of this 
component, reflected by∇φ, and the effective velocity V of the 
probability-flux.

Next, let us examine some “geometrical” implications of 
the continuity relations for the state probability distribution 
(Equation 10 and 11) and its phase (Equation 14 and 15). When 
combined with the effective particle velocity of Equation 5 the 
former predicts

∇⋅ j=V⋅∇p=(ħ/m) ∇φ ⋅∇p,	           			                   (16)

While the latter gives

∇⋅ J=V⋅∇φ=(ħ/m) (∇φ)2				                           (17) 

It thus follows from Equation 16 that gradients of the probability 
and phase state parameters determine a locally perpendicular 
fields: ∇φ(r)⋅∇p(r)=0. The preceding equation similarly implies 
the following expression for the squared phase-gradient:

(∇φ)2=(2m/ħ2) v-R−1∆R=(2m/ħ2) v-½ ∆lnp.		                (18)

Classical and Nonclassical Information 
Descriptors
The (position, time) arguments of both components of general 
wave functions and the distributions they determine, both 
scalar or vector in character, e.g., R(r, t), p(r, t), φ(r, t), or j(r, t), 
V(r, t), J(r, t), define elementary events in the full information-
theoretic description of the molecular electronic structure. The 
nonvanishing phase/current field determines the dynamics of 
the probability distribution. The probability gradients reflects 
the spatial inhomogeneity of the electron distribution, while the 
dynamical derivative ∂p/∂t, related to the divergence (spatial 
inhomogeneity) of the probability current, supplements ∇p 
with the missing temporal component. Therefore, the combined 
(space, time) “gradients” (∂p/∂r, ∂p/∂t =-∇⋅j) together provide 
the complete structural characteristics of the given electronic 
state. Therefore an adequate (resultant) measure of the state 
information content should combine contributions due to all the 
gradient components.

One observes that the classical measures of the Fisher gradient 
information [3,4],

[ ] [ ] [ ]
2

2( )
dr ( ) ln ( ) ( )  ( )

( ) p

p r
I p p r p r dr p r I r dr

p r
∇

= = ∇ ≡∫ ∫ ∫                   (19)

and Shannon’s [5,6] global entropy, 

[ ] ( ) ln ( )  ( ) ( ) pS p p r p r dr p r S r dr= − ≡∫ ∫ 		              (20)

Focus exclusively on the “static” structural element, reflected 
by spatial variations of the probability density at specified time 

t0: p(r, t0)=p(r). The average information for locality events 
then explores only the spatial inhomogeneity of the probability 
distribution, reflected by its position-gradient. The densities-
per-electron of these two classical measures are seen to be 
mutually related, with the squared gradient of entropy density 
determining its Fisher analog:

Ip(r)=[∇Sp(r)]2.					                    (21) 

The classical descriptors I[p] and S[p] of the entropy/information 
content provide adequate measures for the nondegenerate 
stationary states corresponding to the sharply specified energies 
{En ≤ En+1}, Eigen functions of the electronic Hamiltonian of 
Equation (7), 

Ĥ(r)ψn(r, t)=En ψn(r, t), ψn(r, t)=〈r|ψn(t)〉, n=0, 1, 2, …

ψn(r, t)=φn(r) exp(-itEn/ħ)=φn(r) exp(-iωnt)≡φn(r) exp[iφn(t)].     (22) 

These states exhibit the vanishing spatial-phase, φn(r)=0, in the 
overall phase component φ(r, t)=φ(r)+φ(t), and hence φn(r)=Rn(r) 
and the vanishing current jn(r)=0. They give rise to the time-
independent probability density pn(r)=Rn(r)2 and stationary 
conditional probabilities of observing {|ψn} in a general state 
|ψ(t)〉: {P[ψn|ψ(t)]=|〈ψnψ(t=0)〉|2}.

These classical average measures naturally generalize into their 
resultant descriptors combining the probability and phase/
current contributions to the overall entropy/information content 
in the quantum electronic state ψ [2,11-22] These generalized 
concepts are applicable to complex wave functions of molecular 
quantum mechanics. They are defined as expectation values of 
the associated operators: the Hermitian operator of the gradient 
information [29] 2ˆ( ) 4I r = − ∇ , related to the kinetic energy 
operator 2

8ˆ ˆ ˆ( ), ( ) ( )mT r I r T r =  
 

 and the non-Hermitian entropy operator 

[30] Ŝ( ) 2ln ( )ψ= −r r :
2ˆ ( ) ( )( ( )[ ] 4 ) pI I r I r dr r rr dr dψ ψψ ψ τψ ψ= ∇ ≡ ≡= ∫ ∫ ∫ 	               (23)

( ) ln ( ) ( ) ( ) (2 )ˆ[ ] p r r dS S r p r S r dr S r drψ ψψ ψ ψ ψ ≡= = − ≡∫ ∫ ∫           (24)

For general complex state of Equations 1 and 8 one identifies 
the classical (real) components of Equation 16 and 17, due to 
the state modulus/probability distribution, and supplementing 
nonclassical contributions, due to the state phase/current:

[ ] [ ] [ ]
( ) [ ] [ ]

2

2 1 2

[ ] 4 ( )[ ( )] [ ]

2 / ( ( )

 

) ,

p dI I p I p I I p

p Ip jm d

ψ φ φ
−

+ += =

≡

+≡

+

∇∫
∫

r r r

r j r r
	               (25)

] [ [ ][ ] 2i ( ) ( ) .[ ]p dS S p S p iSψ φ φ= − +≡∫ r r r 			                 (26)

Their resultant densities-per-electron [see Equation (23) and 
(24)],

Iψ(r)=Ip(r)+4[∇φ(r)]2 ≡ Ip(r)+Iφ(r) and 

Sψ(r)=Sp(r)-2iφ(r) ≡ Sp(r)+iSφ(r),			                (27) 

Now satisfy the complex-generalized relation [compare Equation 
(18)]:

Iψ(r)=|∇Sψ(r)|2=[∇Sp(r)]2+[∇Sφ(r)]2. 			                 (28)

One observes that Equation (18) gives the alternative expression 
for the state resultant density of the gradient information: 
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Iψ(r)=(8m/ħ2) v-2∆lnp,  ∆lnp=(∆p/p)-(∇p/p)2.		                (29)

To summarize, the modulus (probability) and phase (current) 
components of electronic states generate the spatial and 
temporal elements of the molecular electronic structure. They 
are both accounted for in the resultant measures of the gradient 
or global descriptors of the information/entropy content in 
complex wave functions of molecular quantum mechanics. 
These generalized descriptors combine the familiar classical 
functional of the system probability density and their nonclassical 
supplements due to the current density. Their densities satisfy 
classical relations linking the gradient and global information/
entropy descriptors, appropriately generalized to cover the 
complex electronic states.

Temporal evolution of resultant information 
descriptors
It is of interest to examine the dynamics of resultant measures 
of the entropy/information content in the quantum state ψ(t):

I[ψ(t)]=I[p(t)]+I[φ(t)]=I[p(t)]+I[j(t)]≡I(t) and 

S[ψ(t)]=S[p(t)]+iS[φ(t)]≡S(t).			                   (30) 

One can determine their temporal derivatives directly, using 
the relevant chain-rule transformations over all admissible 
(fixed) locations in space and the probability/phase continuities 
expressed by divergencies of Equations.16 and 17. For example, 
the time derivative of the classical Fisher information I[p] gives

[ ] [ ] ( )
( )

I p p d
I

t p
d

t
p

d
δ
δ

∂
=

∂∫
r r

r
		  		                   (31)

Where:
2

[ ] ( ) ( )2
( ) ( ) ( )

I p p p
p p p

δ
δ

 ∇ ∆
= − 

 

r r
r r r

and 

( ) ( ) ( ) ( ) ( ). .( ) . .j r V r p r r p rp
t m

φ∂  
 = −∇ = − ∇ = − ∇

∂ 
∇


r ħ                (32)

For the non-classical gradient information I [φ] one similarly 
finds:

[ ] [ ] ( ) [ ] ( , )
( ) ( , )

I p I td d
p t t t

dI
dt

φ φ φ φ
φ

∂ ∂ ∂ ∂
+

∂ ∂
=
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r rr r

r r
	                                (33)

With the underlying partial derivatives: 

2[ ] [ ]4[ ( )] , 8[ ( ) ( ) ( ) ( )]
( ) ( )

I I p p
p

φ φφ φ φ
φ

∂ ∂
= ∇ = − ∇ ⋅∇ + ∆

∂ ∂
r r r r r

r r
 and 

( ) ( ) 2( ) ( ). . .  [ ( )]J r V r
mt

φ φ φ= −∇ = − = −
∂  ∇ ∇ ∂  

r r rħ 	                (34)

Combined contributions of Equation 31 and 33 finally determine 
the time derivative of the resultant gradient information:

σI(t)≡dI(t)/dt=dI[p]/dt+dI[]/dt

 =
2

2 2( ) ( )2 4[ ( )] ( ) ( ) 8 ( )[ ( )] ( )
( ) ( )

p p p p d
m p p

φ φ φ φ
     ∆ ∇ − + ∇ ∇ ⋅∇ + ∇ ∆     

       
∫

 r r r r r r r r r
r r      (35)

One observes that this net change of the resultant gradient 
information vanishes in the real electronic state, when φ(r)=0, 
e.g., in the nondegenerate ground state. 

The chain-rule generating the time derivative of the classical 
(Shannon) global entropy reads

[ ]

( ) ( ) ( ) ( ) ( )

[ ] ( )/  r 
( )

= / 1  / ,

S p p rdS p dt d
p r t

m lnp r p r r d Re dS t dtφ

∂ ∂
=

∂ ∂

+ ∇     ∇ =∫

∫
rħ

	              (36)

While that for transforming its nonclassical companion gives: 
[ ] ( ) [ ] ( )/  r +
( ) ( )

[ ] S p r S rdS dt d dr
p r t r t

∂ φ ∂ ∂ φ ∂φ
φ =

∂ ∂ ∂φ ∂∫ ∫ 	  

=(2ħ/m) [φ(r) ∇p(r)+p(r) ∇φ(r)]⋅∇φ(r) dr=Im[dS(t)/dt].              (37)

These two contributions generate the following resultant 
derivative of the complex entropy of Equation 26: 

σS(t)≡dS(t)/dt=dS[p]/dt+i dS[φ]/dt 

= 2{[ln ( ) 2i ( ) 1] ( ) ( ) 2i ( )[ ( ) } ]p p p p d
m

φ φ+ + ∇ ⋅∇ + ∇∫
 r r r r r r r          (38)

Again, this total temporal derivative of the complex entropy is 
seen to be of entirely nonclassical origin, vanishing identically for 
the zero phase-gradient (current).

Discussion
Let us reexamine this temporal evolution of the overall 
information/entropy descriptors using Schrödinger’s dynamical 
“picture” of molecular quantum mechanics. In this framework 
the time change of the resultant gradient information, the 
operator of which does not depend on time explicitly,

( )2 2ˆ( ) 4  8 / ˆ ( )I rr m= − Τ∇ = ħ 			               (39)

Results solely from a dependence of the system state vector 
|ψ(t)〉 itself:

( ) ( ) ( ) ( )
ˆ

tII t t t Iψψ ψ= = 			                                 (40)

One recalls that |ψ(t)〉 is generated by the action of the (unitary) 
time-evolution operator ˆ ( )U t ,

( ) †ˆ ˆ ˆ ˆ( ) exp / , ( ) ( ) 1U t i tH U t U t = − = 

			                  (41) 

On the initial state |ψ(0)〉:

( ) ( )ˆ ( ) 0t U tψ ψ= And ( ) ( ) †ˆ0 ( )t U tψ ψ= 	                  (42)

It then follows from SE 9 that the time derivative of the 
resultant Fisher-type descriptor, of the gradient (determinicity) 
information, is generated by the expectation value of the 
commutator ˆ ˆ,H I   :

( ) ( ) ( ) ( ) ( )
( )

ˆ ˆ ˆ ˆ, ,
t

H I H IdI t dt i t t i
ψ

ψ ψ   ≡  = ħ ħ 	              (43) 

The familiar commutator identities give

] [2ˆ } 4 ,,  [  4 , ,ˆ ˆ, { ] [ ]v v vH I v I = ∇ = ∇ ⋅∇ + ⋅∇  ∇ =  	                 (44)

Where [∇, v]=∇v, and the integration by parts, 

〈ψ|∇ψ〉=-〈∇ψ|ψ〉≡〈∇†ψ|ψ〉,			                (45) 

Implies ∇†=-∇. Hence the derivative of Equation 43 reads: 

dI(t)/dt=(4i/ħ) {〈ψ(t)|∇v ⋅ |∇ψ(t)〉-〈∇ψ(t)| ⋅∇v|ψ(t)〉}=-(8/ħ) Im 

〈ψ(t)|∇v ⋅ |∇ψ(t)〉.			                                   (46)
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Using Equation 5 and 8 finally gives:

σI(t)≡dI(t)/dt =-(8m/ħ2) ∫R(r, t) ∇v(r) ⋅V(r) dr		               (47)

This total derivative of the resultant gradient information is thus 
determined by the current content of the molecular electronic 
state, reflected by the effective velocity field V(r), with the 
product of probability amplitude and gradient of the external 
potential providing a local weighting factor. It identically vanishes 
for the zero current density everywhere. One thus confirms its 
nonclassical origin (compare Equation. 35).

Turning now to the resultant complex entropy of Equations 24 
and 26,

( ) ( ) ( ) ( )
ˆ| S( ) |

t
tS t t t S

ψ
ψ ψ= = 		   	                (48)

One observes that its (non-Hermitian) operator,

Ŝ( ) 2ln ( ) 2[ln ( ) i ( )]t t R t tψ φ= − = − + ,		                (49) 

is explicitly time dependent. This modifies the expression for 
the time derivative of this complex measure of the overall state 
uncertainty by the extra term:

( ) ( ) ( ) ( ) ( )

( )
( )
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dS t i t tH t
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dt

i
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ψ
ψ

ψ ψ ψ ψ∂ =   +
∂

∂
≡ +

 

 
 
 ∂





	               (50)

This Hellmann-Feynman−type contribution represents the 
expectation value in state ψ(t) of the operator derivative

( ) ( ) ( ) ( )1 122 2Ŝ Ĥ ( )
ln t t it t

t t t
t

ψ ψ
ψ ψ ψ− −∂ ∂   ∂  

     ∂ ∂ ∂   
=

 
= − = −

ħ
 

 =-2{R(t)−1[∂R(t)/∂t]+i[∂φ(t)/∂t]},			                    (51) 

Where R−1(∂R/∂t)=½ ∂lnp/∂t (see also Equation 10) and the phase 
dynamics is determined in Equation 14. Its physical meaning is 
revealed by SE, which has been used in the preceding equation,

( )
( )

Ŝ Ĥ2
t

t

i
t ψ

ψ

∂  
 ∂  

=
ħ

				                  (52)

Therefore, this purely imaginary contribution is proportional to 
the state average energy 〈E(t)〉=〈Ĥ〉ψ(t).

In determining the commutator term in Equation 50 one again 
uses the following identities:

( ) ( ) ( ){ }
2 2

2ˆ ˆˆ ˆ[H,S] [T,S] , . , , . ,= ln t ln t ln t
m m

ψ ψ ψ
   

 ∇ = ∇ ∇ + ∇ ∇           
 

=
 

ħ ħ          (53)

Where the elementary entropy commutator (see Equation 8)

[∇, lnψ(t)]=∇lnψ(t)=∇lnR(t)+i∇φ(t)=R(t)−1∇R(t)+i∇φ(t)=½∇lnp(t)
+i∇φ(t)						                   (54)

This contribution to the time derivative of the average complex 
entropy thus reads:

( )
( ) ( ) ( ) ( ) ( ) ( ){ } ˆˆ[H,S] | . | | . |

t

i i t ln t t t ln t t
mψ

ψ ψ ψ ψ ψ ψ  ∇ ∇ − ∇ ∇ 
 

 =  
 
ħ

ħ  

=-(ħ/m) Im 〈ψ(t)|∇lnψ(t) ⋅ |∇ψ(t)〉			                (55)

Therefore, this term determines the real part of the complex 
derivative of Equation 50, while Equation 52 generates its 
imaginary part:

dS(t)/dt=(dS[p]/dt)+i (dS[φ]/dt)=Re[dS(t)/dt]+i Im[dS(t)/dt], 

[ ]
( )

[ ] ( )ˆˆ[H,S 2 ]
t

dS p dSi and E t
dt dtψ

φ     
     

  
=

 
=

ħ ħ
	                               (56) 

It should be finally remarked that the time derivative of the 
average information in state ψ(t) (Equation 23), I(t)=dI(t)/dt, can 
be also expressed as the spatial integral over its density σI(r)=dI(r)/
dt representing the local source (production) term in the 
information continuity equation [2,25]. It assumes the classical 
form [26,31], as the sum over the state independent probability 
and phase components k ∈ (p, φ) of the corresponding products 
of the information affinities (“perturbations”) {Gk(r)=∇Fk(r)}, 
gradients of the associated intensities {Fk(r)} defined by the 
partial functional derivatives

( ) , ( )
( ) ( )p

p

I IF F
p φ

φ φ
   ∂ ∂

= =   ∂ ∂   
r r

r r 			                 (57) 

and the conjugate fluxes (“responses”) {Jk(r)}∈{j(r), J(r)}: 

σI(r)=∑k Gk(r) ⋅ Jk(r)					                   (58)

Conclusion
The need for the nonclassical (phase/current) supplements of 
the classical (probability) measures of the information content 
in molecular states has been stressed. The electron density 
distribution determines a static facet of the molecular structure, 
while the current distribution describes its dynamic aspect. 
Both these structural manifestations contribute to the overall 
information content of a generally complex electronic state of 
molecular systems, reflected by the resultant IT concepts. The 
total time derivatives of such entropic descriptors of electronic 
structure have been examined. These time dependencies 
have been established via the Schrödinger equation and the 
dynamics/continuity of the classical and nonclassical degrees-of-
freedom of complex wave functions it implies. The nonclassical 
origins of the net temporal changes in the overall entropy/
information quantities have been demonstrated. Therefore, for 
the nondegenerate electronic states, which exhibit the vanishing 
local phase and current components, the time derivatives of the 
resultant gradient information and global entropy exactly vanish.

Although, for simplicity reasons, we have assumed one-electron 
case, the modulus (density) and the phase (current) aspects 
of general electronic states can be similarly separated using 
the Harriman-Zumbach-Maschke (HZM) construction [32,33] 
in the Density Functional Theory (DFT) [34-36], of the Slater 
determinants yielding the specified electron density. The present 
single electron development can be then naturally generalized 
into many-electron states of atomic and molecular systems [2].
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