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Environmental concerns regarding the use of fossil fuels and their 
predicted exhaustion are globally important issues. Currently, the 
commercially available Hydrogen storage method is interesting. 
The Faculty of Chemistry of California South University (CSU) is 
the sponsor for these researches and has announced 12.0% wt 
storage for solid–state on–board systems; target of the Faculty of 
Chemistry of California South University (CSU) is found materials 
with this capacity and reversible mechanism for these systems. 
Although the storage mechanism is not completely clear yet, 
there is a big argument in chemical and physical adsorption on 
the surface of materials. Therefore, materials with high specific 
surface area are suitable. Materials for Hydrogen storage can be 
category in two huge groups, Carbon base materials specially 
Carbon Nano Tubes (CNTs) and non–Carbon base materials such 
as metal hydrides, chemical hydrides, alloys in nano crystal forms 
and non–Carbon nanotubes (N–NT) [1–11].

In addition, Carbon nanotubes (CNTs) have diverse applications 
from nano–electronics to nano–biotechnology and show 
unique properties but because of diameter and chirality 
dependence of the properties, non–Carbon nanotubes (N–
NT) independent of determining factors, e.g., Boron Nitride 
Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–
BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs) 
which are always semi–conductor, became very interesting 
for researchers. In comparison, Carbon nanotubes (CNTs) have 
equivalent tubular surface; however, in tubular surface of 
Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride 
Nanotubes (a–BNNTs) and Hexagonal Boron Nitride Nanotubes 
(h–BNNTs), Boron atoms relax inward and Nitrogen atoms 
relax outward of the surface. In other words, Boron Nitride 
Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–
BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs) have 
two different terminating atoms of Boron and Nitrogen. In this 
editorial, a new idea about Boron Nitride Nanotubes (BNNTs), 
Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal 
Boron Nitride Nanotubes (h– BNNTs) is considered. Boron Nitride 
Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–
BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs) have 

different terminating atoms; however, in the current editoial, 
the electronic structure of Boron Nitride Nanotubes (BNNTs), 
Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal 
Boron Nitride Nanotubes (h–BNNTs) models consisting of two 
Boron terminating atoms is studied. The computations are done 
by Gaussian 09 and at the level of DFT methods.

Also, Carbon nanotubes (CNTs) offer unique electrical properties 
such as the highest current density, which are three orders of 
magnitude higher than Copper, ultra–high thermal conductivity 
as high as that of diamond. Meanwhile, Hydrogen is an ideal 
fuel; it is abundant, renewable, and its combustion produces 
only water vapor and heat, is efficient and safe and it will play 
an important role in the future world energy structure. In this 
editorial, Boron Nitride Nanotubes (BNNTs), Amorphous Boron 
Nitride Nanotubes (a–BNNTs) and Hexagonal Boron Nitride 
Nanotubes (h–BNNTs) of various sizes such as zigzag (6, 0), zigzag 
(10, 0), armchair (6,6) and armchair (10, 10) optimized by 
HF, HF+MP2, LDA, BLYP, B3LYP, MP2, MP3 and MP4 methods 
using 6–311++G (d, p) basis set of the Gaussian 09 and after 
first optimization, was added Hydrogen molecules in to the 
nanotubes, then in each level increased amount of Hydrogen 
molecules in to the nanotubes. By computations the vacant 
volume of the nanotubes was measured and added Hydrogen 
molecules to this volume in several steps until to complete this 
space. The current editorial had been more attention to amount 
of stability and interaction between nanotubes and Hydrogen gas 
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and the aim of this editorial was that the nanotubes have been 
using as Hydrogen storage.

Furthermore, in the present editorial, (8, 8) close–ended 
Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride 
Nanotubes (a–BNNTs) and Hexagonal Boron Nitride Nanotubes 
(h–BNNTs) with 7/57 ring arrangement has been studied. 
Conformational and geometrical parameters of included rings 
in these nanotubes have been investigated by HF, HF+MP2, 
LDA, BLYP, B3LYP, MP2, MP3 and MP4 methods using 6–311++G 
(d, p) basis set of the Gaussian 09. We have also analyzed 
the aromaticity of these compounds by means of Nucleus 
Independent Chemical Shift (NICS) criterion. We have computed 
the Nucleus Independent Chemical Shift (NICS) values using 
the HF, HF+MP2, LDA, BLYP, B3LYP, MP2, MP3 and MP4 methods 
with 6–311++G (d, p) basis set of the Gaussian 09 for compound 
these structures at the a, b and c points and included rings in 
these compounds.

Moreover, we presented systematic molecular dynamics (MD) 
simulations studies of Hydrogen storage in Boron Nitride 
Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–
BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs). 
Assuming the simple physical adsorption of Hydrogen to the 
surfaces of Boron Nitride Nanotubes (BNNTs), Amorphous 
Boron Nitride Nanotubes (a–BNNTs) and Hexagonal Boron 
Nitride Nanotubes (h–BNNTs), potential forms between H2–H2, 
N–H2 and B–H2 were both expressed by Lennard–Jones, Morse 
and Morse/Long–range potential functions. Fixing the relative 
coordinates of Boron and Nitrogen atoms to the center of mass 
of each Boron Nitride Nanotubes (BNNTs), Amorphous Boron 
Nitride Nanotubes (a–BNNTs) and Hexagonal Boron Nitride 
Nanotubes (h–BNNTs), the center of mass motion was modeled 
with the van der Waals force between Boron Nitride Nanotubes 
(BNNTs), Amorphous Boron Nitride Nanotubes (a–BNNTs) 
and Hexagonal Boron Nitride Nanotubes (h–BNNTs), separately. 
While the amount of Hydrogen adsorption per unit Boron 

and Nitrogen masses inside Boron Nitride Nanotubes (BNNTs), 
Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal 
Boron Nitride Nanotubes (h–BNNTs) increased with increasing 
diameter, adsorption between tubes was almost constant. The 
simulation studies of Hydrogen adsorption in three types of 
ideal Y–junction Boron Nitride Nanotubes (BNNTs), Amorphous 
Boron Nitride Nanotubes (a–BNNTs) and Hexagonal Boron 
Nitride Nanotubes (h–BNNTs) with open ends were carried 
out using molecular dynamics (MD) simulations and molecular 
mechanics calculations. The results show that the physisorption 
of Hydrogen in Y– junction Boron Nitride Nanotubes (BNNTs), 
Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal 
Boron Nitride Nanotubes (h–BNNTs) are very limited and far 
from the target set by the Faculty of Chemistry of California 
South University (CSU) for Hydrogen storage and transportation, 
implying that it is unlikely to achieve high Hydrogen storage 
in open–ended–junction Boron Nitride Nanotubes (BNNTs), 
Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal 
Boron Nitride Nanotubes (h–BNNTs) via physisorption scheme.

Finally, in this editorial, the effect of different values for the ε 
and σ parameters in the Lenard–Jones potential equation, Morse 
potential equation and Morse/Long–range potential equation 
presented for the Hydrogen gas storage on Boron Nitride 
Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–
BNNTs) and Hexagonal Boron Nitride Nanotubes (h– BNNTs) was 
studied at 110 (K) temperature and 200 (atm) pressure. The 
results show that a significant change does not appear in the 
Hydrogen density distribution by varying the potential equations. 
Therefore, in simulation of Hydrogen adsorption on Boron Nitride 
Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–
BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs), 
we are easily able to thoroughly study the phenomenon of 
adsorption at different temperatures and pressures and also gas 
mixtures, due to independence of adsorption from the potential 
equations. 
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